Oleic acid ameliorates palmitic acid-induced ER stress and inflammation markers in naive and cerulein-treated exocrine pancreas cells

Author:

Ben-Dror Karin1,Birk Ruth1ORCID

Affiliation:

1. Department of Nutrition, Health Sciences School, Ariel University, Israel

Abstract

Abstract Dietary fat overload (typical to obesity) increases the risk of pancreatic pathologies through mechanisms yet to be defined. We previously showed that saturated dietary fat induces pancreatic acinar lipotoxicity and cellular stress. The endoplasmic reticulum (ER) of exocrine pancreas cells is highly developed and thus predisposed to stress. We studied the combination of saturated and unsaturated FAs in metabolic and pancreatitis like cerulein (CER)-induced stress states on cellular ER stress. Exocrine pancreas AR42J and rat primary exocrine acinar cells underwent acute (24 h) challenge with different FAs (saturated, monounsaturated) at different concentrations (250 and 500 µM) and in combination with acute CER-induced stress, and were analyzed for fat accumulation, ER stress unfolded protein response (UPR) and immune and enzyme markers. Acute exposure of AR42J and pancreatic acinar cells to different FAs and their combinations increased triglyceride accumulation. Palmitic acid significantly dose-dependently enhanced the UPR, immune factors and pancreatic lipase (PL) levels, as demonstrated by XBP1 splicing and elevation in UPR transcripts and protein levels (Xbp1,Atf6, Atf4, Chop, Tnfα, Tgfβ and Il-6). Exposure to high palmitic levels in a CER-induced stress state synergistically increased ER stress and inflammation marker levels. Exposure to oleic acid did not induce ER stress and PL levels and significantly decreased immune factors in an acute CER-induced stress state. Combination of oleic and palmitic acids significantly reduced the palmitic-induced ER stress, but did not affect the immune factor response. We show that combination of monounsaturated and saturated FAs protects from exocrine pancreatic cellular ER stress in both metabolic and CER-induced stress.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3