Stressed to death – mechanisms of ER stress-induced cell death

Author:

Sovolyova Natalia,Healy Sandra,Samali Afshin,Logue Susan E.

Abstract

Abstract The endoplasmic reticulum (ER) is a highly dynamic organelle of fundamental importance present in all eukaryotic cells. The majority of synthesized structural and secreted proteins undergo post-translational modification, folding and oligomerization in the ER lumen, enabling proteins to carry out their physiological functions. Therefore, maintenance of ER homeostasis and function is imperative for proper cellular function. Physiological and pathological conditions can disturb ER homeostasis and thus negatively impact upon protein folding, resulting in an accumulation of unfolded proteins. Examples include hypoxia, hypo- and hyperglycemia, acidosis, and fluxes in calcium levels. Increased levels of unfolded/misfolded proteins within the ER lumen triggers a condition commonly referred to as ‘ER stress’. To combat ER stress, cells have evolved a highly conserved adaptive stress response referred to as the unfolded protein response (UPR). UPR signaling affords the cell a ‘window of opportunity’ for stress resolution however, if prolonged or excessive the UPR is insufficient and ER stress-induced cell death ensues. This review discusses the role of ER stress sensors IRE1, PERK and ATF6, describing their role in ER stress-induced death signaling with specific emphasis placed upon the importance of the intrinsic cell death pathway and Bcl-2 family regulation.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference180 articles.

1. The impact of the unfolded protein response on human disease;Wang;Cell Biol,2012

2. of regulates ER Ca homeostasis;Bassik;apoptosis EMBO J,2004

3. Cytoprotective gene bi is required for intrinsic protection from endoplasmic reticulum stress and ischemia - reperfusion injury;Bailly;Proc Natl Acad Sci USA,2006

4. Ca hot spots on the mitochondrial surface are generated by Ca mobilization from stores but not by activation of store - operated Ca;Giacomello;channels Mol Cell,2010

5. Role of ERO alpha - mediated stimulation of inositol triphosphate receptor activity in endoplasmic reticulum stress - induced apoptosis;Li;Cell Biol,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3