Metabolic and molecular changes associated with the increased skeletal muscle insulin action 24–48 h after exercise in young and old humans

Author:

Stephens Francis B.1,Tsintzas Kostas2

Affiliation:

1. Department of Sport and Health Sciences, University of Exeter, Richard's Building, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, U.K.

2. School of Life Sciences, University of Nottingham, Nottingham, U.K.

Abstract

The molecular and metabolic mechanisms underlying the increase in insulin sensitivity (i.e. increased insulin-stimulated skeletal muscle glucose uptake, phosphorylation and storage as glycogen) observed from 12 to 48 h following a single bout of exercise in humans remain unresolved. Moreover, whether these mechanisms differ with age is unclear. It is well established that a single bout of exercise increases the translocation of the glucose transporter, GLUT4, to the plasma membrane. Previous research using unilateral limb muscle contraction models in combination with hyperinsulinaemia has demonstrated that the increase in insulin sensitivity and glycogen synthesis 24 h after exercise is also associated with an increase in hexokinase II (HKII) mRNA and protein content, suggesting an increase in the capacity of the muscle to phosphorylate glucose and divert it towards glycogen synthesis. Interestingly, this response is altered in older individuals for up to 48 h post exercise and is associated with molecular changes in skeletal muscle tissue that are indicative of reduced lipid oxidation, increased lipogenesis, increased inflammation and a relative inflexibility of changes in intramyocellular lipid (IMCL) content. Reduced insulin sensitivity (insulin resistance) is generally related to IMCL content, particularly in the subsarcolemmal (SSL) region, and both are associated with increasing age. Recent research has demonstrated that ageing per se appears to cause an exacerbated lipolytic response to exercise that may result in SSL IMCL accumulation. Further research is required to determine if increased IMCL content affects HKII expression in the days after exercise in older individuals, and the effect of this on skeletal muscle insulin action.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3