Role of ACSL4 in the chemical-induced cell death in human proximal tubule epithelial HK-2 cells

Author:

Kuwata Hiroshi1ORCID,Tomitsuka Yuki1,Yoda Emiko1,Hara Shuntaro1

Affiliation:

1. Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan

Abstract

Abstract Acyl-CoA synthetase long-chain family member 4 (ACSL4) activates polyunsaturated fatty acids (PUFAs) to produce PUFA-derived acyl-CoAs, which are utilised for the synthesis of various biological components, including phospholipids (PLs). Although the roles of ACSL4 in non-apoptotic programmed cell death ferroptosis are well-characterised, its role in the other types of cell death is not fully understood. In the present study, we investigated the effects of ACSL4 knockdown on the levels of acyl-CoA, PL, and ferroptosis in the human normal kidney proximal tubule epithelial (HK-2) cells. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analyses revealed that the knockdown of ACSL4 markedly reduced the levels of PUFA-derived acyl-CoA, but not those of other acyl-CoAs. In contrast with acyl-CoA levels, the docosahexaenoic acid (DHA)-containing PL levels were preferentially decreased in the ACSL4-knockdown cells compared with the control cells. Cell death induced by the ferroptosis inducers RSL3 and FIN56 was significantly suppressed by treatment with ferrostatin-1 or ACSL4 knockdown, and, unexpectedly, upon treating with a necroptosis inhibitor. In contrast, ACSL4 knockdown failed to suppress the other oxidative stress-induced cell deaths initiated by cadmium chloride and sodium arsenite. In conclusion, ACSL4 is involved in the biosynthesis of DHA-containing PLs in HK-2 cells and is specifically involved in the cell death induced by ferroptosis inducers.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3