Amino acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase

Author:

JUNG Sun-Mi1,LE Dung Tien1,YOON Sung-Sook1,YOON Moon-Young2,KIM Young Tae3,CHOI Jung-Do1

Affiliation:

1. School of Life Sciences and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Korea

2. Department of Chemistry, Hanyang University, Seoul 133-791, Korea

3. Department of Microbiology, Pukyong National University, Busan 608-737, Korea

Abstract

The enzyme AHAS (acetohydroxy acid synthase), which is involved in the biosynthesis of valine, leucine and isoleucine, is the target of several classes of herbicides. A model of tobacco AHAS was generated based on the X-ray structure of yeast AHAS. Well conserved residues at the herbicide-binding site were identified, and the roles of three of these residues (Phe-205, Val-570 and Phe-577) were determined by site-directed mutagenesis. The Phe-205 mutants F205A, F205H, F205W and F205Y showed markedly decreased levels of catalytic efficiency, and cross-resistance to two or three classes of herbicides, i.e. Londax (a sulphonylurea herbicide), Cadre (an imidazolinone herbicide) and TP (a triazolopyrimidine derivative). None of the mutations caused significant changes in the secondary or tertiary structure of the enzyme. Four mutants of Phe-577, i.e. F577D, F577E, F577K and F577R, showed unaltered Vmax values, but substantially decreased catalytic efficiency. However, these mutants were highly resistant to two or three of the tested herbicides. The three mutants F577D, F577E and F577R had a similar secondary structure to that of wild-type AHAS. Conservative mutations of Phe-577, i.e. F577W and F577Y, did not affect the kinetic properties of the enzyme or its inhibition by herbicides. The mutation Val-570 to Asn abolished the binding affinity of the enzyme for FAD as well as its activity, and also caused a change in the tertiary structure of AHAS. However, the mutant V570Q was active, but resistant to two classes of herbicides, i.e. Londax and TP. The conservative mutant V570I was substantially reduced in catalytic efficiency and moderately resistant to the three herbicides. The results of this study suggest that residues Phe-205, Val-570 and Phe-577 in tobacco AHAS are located at or near the binding site that is common for the three classes of herbicides. In addition, Phe-205 and Val-570 are probably located at the herbicide-binding site that may overlap partially with the active site. Selected mutants of Phe-577 are expected to be utilized to construct herbicide-resistant transgenic plants.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3