Effect of iron deficiency on placental transfer of iron and expression of iron transport proteins in vivo and in vitro

Author:

GAMBLING Lorraine1,DANZEISEN Ruth1,GAIR Susan1,LEA Richard G.1,CHARANIA Zehane1,SOLANKY Nita2,JOORY Kavita D.1,SRAI S. Kaila S.2,McARDLE Harry J.1

Affiliation:

1. The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, U.K.

2. Department of Biochemistry and Molecular Biology, Royal Free Hospital and School of Medicine, Rowland Hill Road, London, NW3 2QG, U.K.

Abstract

Maternal iron deficiency during pregnancy induces anaemia in the developing fetus; however, the severity tends to be less than in the mother. The mechanism underlying this resistance has not been determined. We have measured placental expression of proteins involved in iron transfer in pregnant rats given diets with decreasing levels of iron and examined the effect of iron deficiency on iron transfer across BeWo cell layers, a model for placental iron transfer. Transferrin receptor expression was increased at both mRNA and protein levels. Similarly, expression of the iron-responsive element (IRE)-regulated form of the divalent metal transporter 1 (DMT1) was also increased. In contrast, the non-IRE regulated isoform showed no change in mRNA levels. Protein levels of DMT1 increased significantly. Iron efflux is thought to be mediated by the metal transporter protein, IREG1/ferroportin1/MTP1, and oxidation of Fe(II) to Fe(III) prior to incorporation into fetal transferrin is carried out by the placental copper oxidase. Expression of IREG1 was not altered by iron deficiency, whereas copper oxidase activity was increased. In BeWo cells made iron deficient by treatment with desferrioxamine (‘deferioxamine’), iron accumulation from iron-transferrin increased, in parallel with increased expression of the transferrin receptor. At the same time, iron efflux also increased, showing a higher flux of iron from the apical to the basolateral side. The data show that expression of placental proteins of iron transport are up-regulated in maternal iron deficiency, resulting in an increased efficiency of iron flux and a consequent minimization of the severity of fetal anaemia.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3