Fractalkine Improves the Expression of Endometrium Receptivity-Related Genes and Proteins at Desferrioxamine-Induced Iron Deficiency in HEC-1A Cells

Author:

Pandur Edina12ORCID,Pap Ramóna12ORCID,Jánosa Gergely1,Horváth Adrienn1,Sipos Katalin12ORCID

Affiliation:

1. Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary

2. National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary

Abstract

Fractalkine (CX3CL1/FKN) is a unique chemokine belonging to the CX3C chemokine subclass. FKN exists in two forms: a membrane-bound form expressed by both endometrium cells and trophoblasts thought to be implicated in maternal–fetal interaction and a soluble form expressed by endometrium cells. Endometrium receptivity is crucial in embryo implantation and a complex process regulated by large numbers of proteins, e.g., cytokines, progesterone receptor (PR), SOX-17, prostaglandin receptors (PTGER2), and tissue inhibitors of metalloproteinases (TIMPs). It has also been reported that iron is important in fertility and affects the iron status of the mother. Therefore, iron availability in the embryo contributes to fertilization and pregnancy. In this study, we focused on the effect of iron deficiency on the secreted cytokines (IL-6, IL-1β, leukocyte inhibitory factor, TGF-β), chemokines (IL-8, FKN), and other regulatory proteins (bone morphogenic protein 2, activin, follistatin, PR, SOX-17, prostaglandin E2 receptor, TIMP2), and the modifying effect of FKN on the expression of these proteins, which may improve endometrium receptivity. Endometrial iron deficiency was mediated by desferrioxamine (DFO) treatment of HEC-1A cells. FKN was added to the cells 24 h and 48 h after DFO with or without serum for modelling the possible iron dependence of the alterations. Our findings support the hypothesis that FKN ameliorates the effects of anemia on the receptivity-related genes and proteins in HEC-1A cells by increasing the secretion of the receptivity-related cytokines via the fractalkine receptor (CX3CR1). FKN may contribute to cell proliferation and differentiation by regulating activin, follistatin, and BMP2 expressions, and to implantation by altering the protein levels of PR, SOX-17, PTGER2, and TIMP2. FKN mitigates the negative effect of iron deficiency on the receptivity-related genes and proteins of HEC-1A endometrium cells, suggesting its important role in the regulation of endometrium receptivity.

Funder

National Laboratory on Human Reproduction

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference75 articles.

1. Implantation and Establishment of Pregnancy in Human and Nonhuman Primates;Geisert;Regulation of Implantation and Establishment of Pregnancy in Mammals. Advances in Anatomy, Embryology and Cell Biology,2015

2. What Exactly Is Endometrial Receptivity?;Lessey;Fertil. Steril.,2019

3. A Review of Mechanisms of Implantation;Kim;Dev. Reprod.,2017

4. Human Implantation: The Complex Interplay between Endometrial Receptivity, Inflammation, and the Microbiome;Sehring;Placenta,2022

5. Evaluation of Endometrial Receptivity and Implantation Failure;Bui;Curr. Opin. Obstet. Gynecol.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3