ERK phosphorylation and nuclear accumulation: insights from single-cell imaging

Author:

Caunt Christopher J.1,McArdle Craig A.2

Affiliation:

1. Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K.

2. Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Science, University of Bristol, Whitson Street, Bristol BS1 3NY, U.K.

Abstract

Many stimuli mediate activation and nuclear translocation of ERK (extracellular-signal-regulated kinase) by phosphorylation on the TEY (Thr-Glu-Tyr) motif. This is necessary to initiate transcriptional programmes controlling cellular responses, but the mechanisms that govern ERK nuclear targeting are unclear. Single-cell imaging approaches have done much to increase our understanding of input–output relationships in the ERK cascade, but few studies have addressed how the range of ERK phosphorylation responses observed in cell populations influences subcellular localization. Using automated microscopy to explore ERK regulation in single adherent cells, we find that nuclear localization responses increase in proportion to stimulus level, but not the level of TEY phosphorylation. This phosphorylation-unattributable nuclear localization response occurs in the presence of tyrosine phosphatase and protein synthesis inhibitors. It is also seen with a catalytically inactive ERK2–GFP (green fluorescent protein) mutant, and with a mutant incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK-binding partners. It is, however, reduced by MEK (mitogen-activated protein kinase/ERK kinase) inhibition and by mutations preventing TEY phosphorylation or in the ERK common docking region. We therefore show that TEY phosphorylation of ERK is necessary, but not sufficient, for the full nuclear accumulation response and that this ‘phosphorylation-unattributable’ component of stimulus-mediated ERK nuclear localization requires association with partner proteins via the common docking motif.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference47 articles.

1. Differential regulation and properties of MAPKs;Raman;Oncogene,2007

2. Seven-transmembrane receptor signalling and ERK compartmentalization;Caunt;Trends Endocrinol. Metab.,2006

3. GnRH receptor signalling to ERK: kinetics and compartmentalization;Caunt;Trends Endocrinol. Metab.,2006

4. The RAF proteins take centre stage;Wellbrock;Nat. Rev. Mol. Cell Biol.,2004

5. Raf-1 activates MAP kinase-kinase;Kyriakis;Nature,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3