Co-incident signalling between μ-opioid and M3 muscarinic receptors at the level of Ca2+ release from intracellular stores: lack of evidence for Ins(1,4,5)P3 receptor sensitization

Author:

SAMWAYS Damien S. K.1,LI Wen-hong2,CONWAY Stuart J.3,HOLMES Andrew B.3,BOOTMAN Martin D.4,HENDERSON Graeme1

Affiliation:

1. Department of Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

2. Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, U.S.A.

3. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

4. Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, U.K.

Abstract

Activation of Gi/Go-coupled opioid receptors increases [Ca2+]i (intracellular free-Ca2+ concentration), but only if there is concomitant Gq-coupled receptor activation. This Gi/Go-coupled receptor-mediated [Ca2+]i increase does not appear to result from further production of InsP3 [Ins(1,4,5)P3] in SH-SY5Y cells. In the present study, fast-scanning confocal microscopy revealed that activation of μ-opioid receptors alone by 1 μM DAMGO ([d-Ala, NMe-Phe, Gly-ol]-enkephalin) did not stimulate the InsP3-dependent elementary Ca2+-signalling events (Ca2+ puffs), whereas DAMGO did evoke Ca2+ puffs when applied during concomitant activation of M3 muscarinic receptors with 1 μM carbachol. We next determined whether μ-opioid receptor activation might increase [Ca2+]i by sensitizing the InsP3 receptor to InsP3. DAMGO did not potentiate the amplitude of the [Ca2+]i increase evoked by flash photolysis of the caged InsP3 receptor agonist, caged 2,3-isopropylidene-InsP3, whereas the InsP3 receptor sensitizing agent, thimerosal (10 μM), did potentiate this response. DAMGO also did not prolong the rate of decay of the increase in [Ca2+]i evoked by flash photolysis of caged 2,3-isopropylidene-InsP3. Furthermore, DAMGO did not increase [Ca2+]i in the presence of the cell-membrane-permeable InsP3 receptor agonist, InsP3 hexakis(butyryloxymethyl) ester. Therefore it appears that μ-opioid receptors do not increase [Ca2+]i through either InsP3 receptor sensitization, enhancing the releasable pool of Ca2+ or inhibition of Ca2+ removal from the cytoplasm.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3