Transcriptional plasticity of fibroblasts in heart disease

Author:

Micheletti Rudi1,Alexanian Michael23ORCID

Affiliation:

1. 1Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, U.S.A.

2. 2Gladstone Institutes, San Francisco, CA, U.S.A.

3. 3Department of Pediatrics, University of California, San Francisco, CA, U.S.A.

Abstract

Cardiac fibroblasts play an essential role in maintaining the structural framework of the heart. Upon stress, fibroblasts undergo a cell state transition to activated fibroblasts (also referred to as myofibroblasts), a highly synthetic cell type that proliferates, migrates, and secrets both extracellular matrix as well as signaling factors that can modulate cellular crosstalk [J. Clin. Invest. 132, e148554]. Activated fibroblasts are critical regulators of cardiac wound healing after injury, but their excessive and persistent activation promote tissue fibrosis, a hallmark feature of the pathological remodeling of the heart. While much of the previous work in cardiac fibroblast biology has focused on the role of canonical signaling pathways or components of the extracellular matrix, recent efforts have been focused on deciphering the gene regulatory principles governing fibroblast activation. A better understanding of the molecular mechanisms that trigger and sustain the fibrotic process in heart disease has the potential to accelerate the development of therapies that specifically target the cardiac activated fibroblasts, which are at the moment unavailable. This concise review focuses on the mechanisms underlying the chromatin and transcriptional regulation of cardiac fibroblast activation. We discuss recent work from our group and others in this space, highlighting the application of single-cell genomics in the characterization of fibroblast function and diversity, and provide an overview on the prospects of targeting cardiac fibroblasts in heart disease and the associated challenges.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3