Targeted Ablation of Periostin-Expressing Activated Fibroblasts Prevents Adverse Cardiac Remodeling in Mice

Author:

Kaur Harmandeep1,Takefuji Mikito1,Ngai C.Y.1,Carvalho Jorge1,Bayer Julia1,Wietelmann Astrid1,Poetsch Ansgar1,Hoelper Soraya1,Conway Simon J.1,Möllmann Helge1,Looso Mario1,Troidl Christian1,Offermanns Stefan1,Wettschureck Nina1

Affiliation:

1. From the Department of Pharmacology (H.K., C.Y.N., J.C., S.O., N.W.), Bioinformatics Facility (J.B., M.L.), Nuclear Magnetic Resonance Imaging Facility (A.W.), and Mass Spectrometry Group (A.P., S.H.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (M.T.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (S.J.C.); Department of Cardiology, Kerckhoff Heart and...

Abstract

Rationale: Activated cardiac fibroblasts (CF) are crucial players in the cardiac damage response; excess fibrosis, however, may result in myocardial stiffening and heart failure development. Inhibition of activated CF has been suggested as a therapeutic strategy in cardiac disease, but whether this truly improves cardiac function is unclear. Objective: To study the effect of CF ablation on cardiac remodeling. Methods and Results: We characterized subgroups of murine CF by single-cell expression analysis and identified periostin as the marker showing the highest correlation to an activated CF phenotype. We generated bacterial artificial chromosome–transgenic mice allowing tamoxifen-inducible Cre expression in periostin-positive cells as well as their diphtheria toxin-mediated ablation. In the healthy heart, periostin expression was restricted to valvular fibroblasts; ablation of this population did not affect cardiac function. After chronic angiotensin II exposure, ablation of activated CF resulted in significantly reduced cardiac fibrosis and improved cardiac function. After myocardial infarction, ablation of periostin-expressing CF resulted in reduced fibrosis without compromising scar stability, and cardiac function was significantly improved. Single-cell transcriptional analysis revealed reduced CF activation but increased expression of prohypertrophic factors in cardiac macrophages and cardiomyocytes, resulting in localized cardiomyocyte hypertrophy. Conclusions: Modulation of the activated CF population is a promising approach to prevent adverse cardiac remodeling in response to angiotensin II and after myocardial infarction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3