Characterization of non-cytosolic hexokinase activity in white skeletal muscle from goldfish (Carassius auratus L.) and the effect of cold acclimation

Author:

dos Santos Reinaldo Sousa1,Diniz Luan Pereira1,Galina Antonio2,da-Silva Wagner Seixas1

Affiliation:

1. Laboratory of Bioenergetics, Institute of Medical Biochemistry, Program of Biochemistry and Cellular Biophysics, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil

2. Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry, Program of Biochemistry and Cellular Biophysics, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil

Abstract

HK (hexokinase) is an enzyme involved in the first step in the glucose metabolism pathway, converting glucose into G6P (glucose 6-phosphate). Owing to the importance of skeletal muscle for fish swimming and acclimation processes, we used goldfish (Carassius auratus L.) white muscle in order to investigate subcellular distribution and kinetics of HK. In this study, we report that HK activity is predominantly localized in the mitochondrial fraction [NC-HK (non-cytosolic HK)] in goldfish white muscle. Studies of the kinetic parameters revealed that the Km (Michaelis–Menten constant) for glucose was 0.41±0.03 mM and that for mannose was 3-fold lower, whereas the affinity for fructose was too low to be measured. The Km for ATP was 0.88±0.05 mM, whereas no activity was observed when either GTP or ITP was used as a phosphate donor. A moderate inhibition (20–40%) was found for ADP and AMP. Similar to mammalian HK, G6P and glucose analogues were able to promote an inhibition of between 85 and 100% of activity. Here, we found that acclimation of goldfish at 5°C promoted a 2.5-fold increase in NC-HK compared with its counterpart acclimated at 25°C. However, cytosolic HK activity was not altered after thermal acclimation. In summary, our results suggest that the goldfish has a constitutive NC-HK that shows some similarities to mammalian HK-II and, curiously, may play a role in the broad metabolic changes required during the cold acclimation process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3