Transcriptome sequencing reveals the differentially expressed lncRNAs and mRNAs in response to cold acclimation and cold stress in Pomacea canaliculata

Author:

Xiao Qi,Lin Youfu,Li Hong,Chen Yu,Wei Wei,Li Peng,Chen Lian

Abstract

Abstract Background Tolerance of low temperature has a significant impact on survival and expansion of invasive snail Pomacea canalicuata. Cold acclimation can enhance cold tolerance of Pomacea canalicuata. To elucidate the molecular mechanism of P. canaliculata’s responses to cold acclimation and cold stress, a high-throughput transcriptome analysis of P. canaliculata was performed, and gene expression following artificial cold acclimation and then cold stress at 0 °C for 24 h was compared using RNA sequencing. Results Using the Illumina platform, we obtained 151.59 G subreads. A total of 5,416 novel lncRNAs were identified, and 3166 differentially expressed mRNAs and 211 differentially expressed lncRNAs were screened with stringent thresholds. The potential antisense, cis and trans targets of lncRNAs were predicted. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that many target genes were involved in proteasome, linoleic acid metabolism and retinol metabolism under cold acclimation. The lncRNA of P. canaliculata could participate in cold acclimation by regulating the expression of E3 ubiquitin protein ligase, 26S proteasome non-ATPase dependent regulation subunit, glutathione S-transferase, sodium/glucose cotransporter and cytochrome P450. Conclusions These results broaden our understanding of cold acclimation and cold stress associated lncRNAs and mRNAs, and provide new insights into lncRNA mediated regulation of P. canaliculata cold acclimation and cold stress response.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3