Organophosphate hydrolase interacts with ferric-enterobactin and promotes iron uptake in association with TonB-dependent transport system

Author:

Parapatla Hari1,Gudla Ramurthy1,Konduru Guruprasad Varma23,Devadasu Elsin Raju4,Nagarajaram Hampapathula Adimurthy5,Sritharan Manjula1,Subramanyam Rajagopal4,Siddavattam Dayananda1ORCID

Affiliation:

1. Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

2. Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India

3. Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

4. Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

5. Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

Abstract

Our previous studies have shown the existence of organophosphate hydrolase (OPH) as a part of the inner membrane associated Ton complex (ExbB/ExbD and TonB) of Sphingobium fuliginis. We now show its involvement in iron uptake by establishing direct interactions with ferric-enterobactin. The interactions between OPH and ferric-enterobactin were not affected even when the active site architecture is altered by substituting active site aspartate with either alanine or asparagine. Protein docking studies further substantiated these findings and predicted the existence of ferric-enterobactin binding site that is different from the catalytic site of OPH. A lysine residue (82K) found at the predicted ferric-enterobactin binding site facilitated interactions between OPH and ferric-enterobactin. Substitution of lysine with alanine did not affect triesterase activity, but it abrogated OPH ability to interact with both ferric-enterobactin and ExbD, strengthening further the fact that the catalytic site is not the site for binding of these ligands. In the absence of interactions between OPHK82A and ExbD, OPHK82A failed to target membrane in E. coli cells. The Sphingobium fuliginis TonB-dependent transport (SfTonBDT) system was reconstituted in E. coli GS027 cells generated by deleting the exbD and tonB genes. The E. coli GS030 cells having SfTonBDT system with OPH showed increased iron uptake. Such an increase was not seen in E. coli GS029, cells having SfTonBDT system generated either by omitting OPH or by including its variants, OPHD301A, OPHD301N suggesting a role for OPH in enhanced iron uptake.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3