Effects of ionizing radiations on proteins. Evidence of non-random fragmentations and a caution in the use of the method for determination of molecular mass

Author:

Le Maire M1,Thauvette L2,de Foresta B1,Viel A1,Beauregard G2,Potier M2

Affiliation:

1. Centre de Génétique Moléculaire, Laboratoire du Centre National de la Recherche Scientifique, Associé à 1′Université de Paris VI, 91198 Gif-sur-Yvette Cedex, France.

2. Section de Génétique Médicale, Hopital Sainte-Justine, Université de Montréal, Montréal, Canada H3T 1C5.

Abstract

We have reinvestigated the use of ionizing radiations to measure the molecular mass of water-soluble or membrane proteins. The test was performed by using the most straightforward aspect of the technique, which consists of SDS/PAGE analysis of the protein-fragmentation process. We found that exposure of purified standard proteins to increasing doses of ionizing radiation causes progressive fragmentation of the native protein into defined peptide patterns. The coloured band corresponding to the intact protein was measured on the SDS gel as a function of dose to determine the dose (D37.t) corresponding to 37% of the initial amount of unfragmented protein deposited on the gel. This led to a calibration curve between 1/D37.t and the known molecular mass of the standard proteins whose best fit gave Mr = 1.77 x 10(6)/D37.t at -78 degrees C, i.e. 35% higher than the generally accepted value at that temperature obtained from inactivation studies. However, we have to conclude that this method is useless to determine the state of aggregation of a protein, since, for all the oligomers tested, the best fit was obtained by using the protomeric molecular mass, suggesting that there is no energy transfer between promoters. Furthermore, SDS greatly increases the fragmentation rate of proteins, which suggests additional calibration problems for membrane proteins in detergent or in the lipid bilayer. But the main drawback of the technique arises from our observation that some proteins behaved anomalously, leading to very large errors in the apparent target size as compared with true molecular mass (up to 100%). It is thus unreliable to apply the radiation method for absolute molecular-mass determination. We then focused on the novel finding that discrete fragmentation of proteins occurs at preferential sites, and this was studied in more detail with aspartate transcarbamylase. N-Terminal sequencing of several radiolysis fragments of the catalytic chain of the enzyme revealed that breaks along the polypeptide chains are localized close to the C-terminal end. Examination of the three-dimensional structure of aspartate transcarbamylase suggests that radiolysis sites (fragile bonds) might be localized in connecting loops.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3