Deletion of phospholipase A2 group IVc induces apoptosis in rat mammary tumour cells by the nuclear factor-κB/lipocalin 2 pathway

Author:

Nanashima Naoki12,Yamada Toshiyuki1,Shimizu Takeshi1,Tsuchida Shigeki1

Affiliation:

1. Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan

2. Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan

Abstract

Although some forms of phospholipase A2, the initiator of the arachidonic acid cascade, contribute to carcinogenesis in many organs, the contribution of phospholipase A2 group IVc (Pla2g4c) remains to be clarified and the function of the enzyme in cancer development is unknown. The Hirosaki hairless rat (HHR), a mutant rat strain with autosomal recessive inheritance, derived spontaneously from the Sprague–Dawley rat (SDR). The HHRs showed a lower incidence and much smaller volume of mammary tumours induced by 7,12-dimethylbenz[a]anthracene, and a markedly increased number of TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling)-positive apoptotic cells was detected. Array comparative genomic hybridization and PCR analyses revealed the deletion of 50-kb genomic DNA on 1q21, including Pla2g4c, in HHRs. The Pla2g4c gene was expressed in the ductal carcinoma cells and myoepithelial cells in SDRs, but not in HHRs. The direct involvement of Pla2g4c in the prevention of cell death was demonstrated through the inhibition of its expression in rat mammary tumour RMT-1 cells using siRNA. This treatment also induced expression of lipocalin 2 (Lcn2) and other NF-κB (nuclear factor κB)-related genes. siRNA-induced apoptosis was inhibited by Lcn2 repression or NF-κB inhibitors. This is the first report on Pla2g4c gene-deficient rats and their low susceptibility to mammary carcinogenesis by enhancing NF-κB/Lcn2-induced apoptosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3