Development and use of fluorescent nanosensors for metabolite imaging in living cells

Author:

Fehr M.1,Okumoto S.1,Deuschle K.1,Lager I.1,Looger L.L.1,Persson J.1,Kozhukh L.1,Lalonde S.1,Frommer W.B.1

Affiliation:

1. Carnegie Institution, Plant Biology, 260 Panama St., Stanford, CA 94305, U.S.A.

Abstract

To understand metabolic networks, fluxes and regulation, it is crucial to be able to determine the cellular and subcellular levels of metabolites. Methods such as PET and NMR imaging have provided us with the possibility of studying metabolic processes in living organisms. However, at present these technologies do not permit measuring at the subcellular level. The cameleon, a fluorescence resonance energy transfer (FRET)-based nanosensor uses the ability of the calcium-bound form of calmodulin to interact with calmodulin binding polypeptides to turn the corresponding dramatic conformational change into a change in resonance energy transfer between two fluorescent proteins attached to the fusion protein. The cameleon and its derivatives were successfully used to follow calcium changes in real time not only in isolated cells, but also in living organisms. To provide a set of tools for real-time measurements of metabolite levels with subcellular resolution, protein-based nanosensors for various metabolites were developed. The metabolite nanosensors consist of two variants of the green fluorescent protein fused to bacterial periplasmic binding proteins. Different from the cameleon, a conformational change in the binding protein is directly detected as a change in FRET efficiency. The prototypes are able to detect various carbohydrates such as ribose, glucose and maltose as purified proteins in vitro. The nanosensors can be expressed in yeast and in mammalian cell cultures and were used to determine carbohydrate homeostasis in living cells with subcellular resolution. One future goal is to expand the set of sensors to cover a wider spectrum of metabolites by using the natural spectrum of bacterial periplasmic binding proteins and by computational design of the binding pockets of the prototype sensors.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3