Analysis of the Compartmentation of Glycolytic Intermediates, Nucleotides, Sugars, Organic Acids, Amino Acids, and Sugar Alcohols in Potato Tubers Using a Nonaqueous Fractionation Method

Author:

Farré Eva M.1,Tiessen Axel2,Roessner Ute1,Geigenberger Peter2,Trethewey Richard N.1,Willmitzer Lothar1

Affiliation:

1. Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany (E.M.F., U.R., R.N.T., L.W.); and

2. Botanisches Institut, Universität Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany (A.T., P.G.)

Abstract

Abstract The compartmentation of metabolism in heterotrophic plant tissues is poorly understood due to the lack of data on metabolite distributions and fluxes between subcellular organelles. The main reason for this is the lack of suitable experimental methods with which intracellular metabolism can be measured. Here, we describe a nonaqueous fractionation method that allows the subcellular distributions of metabolites in developing potato (Solanum tuberosum L. cv Desiree) tubers to be calculated. In addition, we have coupled this fractionation method to a recently described gas chromatography-mass spectrometry procedure that allows the measurement of a wide range of small metabolites. To calculate the subcellular metabolite concentrations, we have analyzed organelle volumes in growing potato tubers using electron microscopy. The relative volume distributions in tubers are very similar to the ones for source leaves. More than 60% of most sugars, sugar alcohols, organic acids, and amino acids were found in the vacuole, although the concentrations of these metabolites is often higher in the cytosol. Significant amounts of the substrates for starch biosynthesis, hexose phosphates, and ATP were found in the plastid. However, pyrophosphate was located almost exclusively in the cytosol. Calculation of the mass action ratios of sucrose synthase, UDP-glucose pyrophosphorylase, phosphoglucosisomerase, and phosphoglucomutase indicate that these enzymes are close to equilibrium in developing potato tubers. However, due to the low plastidic pyrophosphate concentration, the reaction catalyzed by ADP-glucose pyrophosphorylase was estimated to be far removed from equilibrium.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference80 articles.

1. Compartmentation of plant metabolism.;ap Rees;The Biochemistry of Plants,1987

2. Sucrose and other disaccharides.;Avigad,1982

3. 31P NMR studies of spinach leaves and their chloroplasts.;Bligny;J Biol Chem,1990

4. Molecular cloning and characterization of the enzyme UDP-glucose: protein transglucosylase from potato.;Bocca;Plant Physiol Biochem,1999

5. Hydrolytic enzymes in the central vacuole of plant cells.;Boller;Plant Physiol,1979

Cited by 284 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3