Learning to read and write in evolution: from static pseudoenzymes and pseudosignalers to dynamic gear shifters

Author:

Abudukelimu Abulikemu12,Mondeel Thierry D.G.A.1,Barberis Matteo1,Westerhoff Hans V.123

Affiliation:

1. Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

2. Molecular Cell Physiology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

3. Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, U.K

Abstract

We present a systems biology view on pseudoenzymes that acknowledges that genes are not selfish: the genome is. With network function as the selectable unit, there has been an evolutionary bonus for recombination of functions of and within proteins. Many proteins house a functionality by which they ‘read’ the cell's state, and one by which they ‘write’ and thereby change that state. Should the writer domain lose its cognate function, a ‘pseudoenzyme’ or ‘pseudosignaler’ arises. GlnK involved in Escherichia coli ammonia assimilation may well be a pseudosignaler, associating ‘reading’ the nitrogen state of the cell to ‘writing’ the ammonium uptake activity. We identify functional pseudosignalers in the cyclin-dependent kinase complexes regulating cell-cycle progression. For the mitogen-activated protein kinase pathway, we illustrate how a ‘dead’ pseudosignaler could produce potentially selectable functionalities. Four billion years ago, bioenergetics may have shuffled ‘electron-writers’, producing various networks that all served the same function of anaerobic ATP synthesis and carbon assimilation from hydrogen and carbon dioxide, but at different ATP/acetate ratios. This would have enabled organisms to deal with variable challenges of energy need and substrate supply. The same principle might enable ‘gear-shifting’ in real time, by dynamically generating different pseudo-redox enzymes, reshuffling their coenzymes, and rerouting network fluxes. Non-stationary pH gradients in thermal vents together with similar such shuffling mechanisms may have produced a first selectable proton-motivated pyrophosphate synthase and subsequent ATP synthase. A combination of functionalities into enzymes, signalers, and the pseudo-versions thereof may offer fitness in terms of plasticity, both in real time and in evolution.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3