Wavelength-dependence of the relative rate constants for the main geometric and structural photoisomerization of bilirubin IX α bound to human serum albumin. Demonstration of green light at 510 nm as the most effective wavelength in photochemical changes from (ZZ)-bilirubin IX α to (EZ)-cyclobilirubin IX α via (EZ)-bilirubin

Author:

Onishi S,Itoh S,Isobe K

Abstract

The kinetics for the quantitatively important reaction: (Formula: see text) that is, the photochemical interconversion between bilirubin and its geometric and structural photoisomers bound to human serum albumin in aqueous solution when various wavelengths of monochromatic light were used, were assayed by h.p.l.c. In order to clarify the wavelength-dependence of the relative rate constants in the individual steps, a light-source with a half-bandwidth of 10 nm was used at increments of 20 nm, in the range from 410 nm to 550 nm. We describe for the first time studies on the wavelength-dependence of rate constants in geometric and structural photoisomerization reactions in vitro of (ZZ)-bilirubin or (EZ)-bilirubin bound to human serum albumin, especially the relative rate constants of cyclization of (EZ)-bilirubin into (EZ)-cyclobilirubin. Because studies in vitro have demonstrated that the wavelengths from 350 to 450 nm are mutagenic, the results obtained indicated that the safest and ideal light-source for phototherapy is green light of 510 nm, which keeps (ZE)-bilirubin concentrations as low as possible, as shown by a maximal value of k2 at 510 nm and a relatively low value of k1 at 510 nm. This light-source still ensures the substantial absorption of (ZZ)-bilirubin, which is the precursor of (EZ)-bilirubin, the intermediate in (EZ)-cyclobilirubin formation and, furthermore, as shown by the maximal value of k5 and a considerable value of k4 at 510 nm, promotes the cyclization of (EZ)-bilirubin derived from (ZZ)-bilirubin even though k3 at 510 nm also shows a peak value.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3