Swimming regulations for protein kinase A catalytic subunit

Author:

Gold Matthew G.1ORCID

Affiliation:

1. Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, U.K.

Abstract

Abstract cAMP-dependent protein kinase (PKA) plays a central role in important biological processes including synaptic plasticity and sympathetic stimulation of the heart. Elevations of cAMP trigger release of PKA catalytic (C) subunits from PKA holoenzymes, thereby coupling cAMP to protein phosphorylation. Uncontrolled C subunit activity, such as occurs in genetic disorders in which regulatory subunits are depleted, is pathological. Anchoring proteins that associate with PKA regulatory subunits are important for localising PKA activity in cells. However, anchoring does not directly explain how unrestrained ‘free swimming' of C subunits is avoided following C subunit release. In this review, I discuss new mechanisms that have been posited to account for this old problem. One straightforward explanation is that cAMP does not trigger C subunit dissociation but instead activates intact PKA holoenzymes whose activity is restrained through anchoring. A comprehensive comparison of observations for and against cAMP-activation of intact PKA holoenzymes does not lend credence to this mechanism. Recent measurements have revealed that PKA regulatory subunits are expressed at very high concentrations, and in large molar excess relative to C subunits. I discuss the implications of these skewed PKA subunit concentrations, before considering how phosphorylation of type II regulatory subunits and myristylation of C subunits are likely to contribute to controlling C subunit diffusion and recapture in cells. Finally, I speculate on future research directions that may be pursued on the basis of these emerging mechanisms.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3