Using automated reasoning to explore the metabolism of unconventional organisms: a first step to explore host–microbial interactions

Author:

Frioux Clémence123,Dittami Simon M.4,Siegel Anne1ORCID

Affiliation:

1. Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France

2. Inria Bordeaux Sud-Ouest, 33405 Talence, France

3. Quadram Institute, Norwich Research Park, Norwich, Norfolk NR4 7UQ, U.K.

4. Integrative Biology of Marine Models, Sorbonne Université/CNRS, Station Biologique de Roscoff, UMR 8227, CS 90074 Roscoff, France

Abstract

Systems modelled in the context of molecular and cellular biology are difficult to represent with a single calibrated numerical model. Flux optimisation hypotheses have shown tremendous promise to accurately predict bacterial metabolism but they require a precise understanding of metabolic reactions occurring in the considered species. Unfortunately, this information may not be available for more complex organisms or non-cultured microorganisms such as those evidenced in microbiomes with metagenomic techniques. In both cases, flux optimisation techniques may not be applicable to elucidate systems functioning. In this context, we describe how automatic reasoning allows relevant features of an unconventional biological system to be identified despite a lack of data. A particular focus is put on the use of Answer Set Programming, a logic programming paradigm with combinatorial optimisation functionalities. We describe its usage to over-approximate metabolic responses of biological systems and solve gap-filling problems. In this review, we compare steady-states and Boolean abstractions of metabolic models and illustrate their complementarity via applications to the metabolic analysis of macro-algae. Ongoing applications of this formalism explore the emerging field of systems ecology, notably elucidating interactions between a consortium of microbes and a host organism. As the first step in this field, we will illustrate how the reduction in microbiotas according to expected metabolic phenotypes can be addressed with gap-filling problems.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3