A 63 kDa phosphoprotein undergoing rapid dephosphorylation during exocytosis in Paramecium cells shares biochemical characteristics with phosphoglucomutase

Author:

Treptau T1,Kissmehl R1,Wissmann J D1,Plattner H1

Affiliation:

1. Faculty of Biology, University of Konstanz, P.O. Box 5560, D-78434 Konstanz, Federal Republic of Germany

Abstract

We have enriched phosphoglucomutase (PGM; EC 5.4.2.2) approximately 20-fold from Paramecium tetraurelia cells by combined fractional precipitation with (NH4)2SO4, gel filtration and anion-exchange chromatography yielding two PGM peaks. Several parameters affecting PGM enzymic activity, molecular mass and pI were determined. Phosphorylation studies were done with isolated endogenous protein kinases. Like the 63 kDa phosphoprotein PP63, which is dephosphorylated within 80 ms during synchronous trichocyst exocytosis [Höhne-Zell, Knoll, Riedel-Gras, Hofer and Plattner (1992) Biochem. J. 286, 843-849], PGM has a molecular mass of 63 kDa and forms of identical pI. Since mammalian PGM activity depends on the presence of glucose 1,6-bisphosphate (Glc-1,6-P2) (which is lost during anion-exchange chromatography), we analysed this aspect with Paramecium PGM. In this case PGM activity was shown not to be lost, due to p-nitrophenyl phosphate-detectable phosphatase(s) (which we have separated from PGM), but also due to loss of Glc-1,6-P2. Like PGM from various vertebrate species, PGM activity from Paramecium can be fully re-established by addition of Glc-1,6-P2 at 10 nM, and it is also stimulated by bivalent cations and insensitive to chelating or thiol reagents. The PGM which we have isolated can be phosphorylated by endogenous cyclic-GMP-dependent protein kinase or by endogenous casein kinase. This results in three phosphorylated bands of identical molecular mass and pI values, as we have shown to occur with PP63 after phosphorylation in vivo (forms with pI 6.05, 5.95, 5.85). In ELISA, antibodies raised against PGM from rabbit skeletal muscle were reactive not only with original PGM but also with PGM fractions from Paramecium. Therefore, PGM and PP63 seem to be identical with regard to widely different parameters, i.e. co-elution by chromatography, molecular mass, phosphorylation by the two protein kinases tested, pI values of isoforms, and immuno-binding. Recent claims that PP63 (‘parafusin’) would not be identical with PGM specifically in Paramecium are critically evaluated. Since some glycolytic enzymes are discussed as being associated with the Ca(2+)-release channel in muscle sarcoplasmic reticulum, and since sub-plasmalemmal Ca2+ stores in Paramecium closely resemble sarcoplasmic reticulum, a possible function of PP63/PGM in exocytosis regulation is discussed, particularly since dephosphorylation strictly parallels exocytosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3