Abstract
AbstractParafusin is a phosphoglucomutase (PGM) paralog that acts as a signaling scaffold protein in calcium mediated exocytosis across many eukaryotes. In Toxoplasma gondii the parafusin related protein 1 (PRP1) has been associated in indirect and heterologous studies with the regulated exocytosis of the micronemes, which are required for successful host cell invasion and egress. Here we directly assessed the role of PRP1 by deleting the gene from the parasite. We observed a specific defect in microneme secretion in response to high Ca2+ fluxes, but not to phosphatidic acid fluxes controlling microneme release. We observed no defect in constitutive microneme secretion which was sufficient to support completion of the lytic cycle. Furthermore, deletion of the other PGM in Toxoplasma, PGM2, as well as the double PRP1/PGM2 deletion resulted in a similar phenotype. This suggests a functional interaction between these two genes. Strikingly, tachyzoites without both paralogs are completely viable in vitro and during acute mice infections. This indicates that PGM activity is neither required for glycolysis. In conclusion, the PRP1-PGM2 pair is required for a burst in microneme secretion upon high Ca2+ fluxes, but this burst is not essential to complete the lytic cycle of the parasite.Plain Language SummaryCalcium mediated control of microneme secretion is essential for host cell invasion and egress of Toxoplasma gondii. Here it is shown that the two phosphoglucomutases in Toxoplasma both function in the translation of a spike in calcium into a burst in microneme secretion.
Publisher
Cold Spring Harbor Laboratory