Affiliation:
1. Department of Biochemistry, School of Biological Sciences, University of Leicester, Leicester LE1 7RH, U.K.
Abstract
1. Acetyl-CoA acts as a positive allosteric effector in the formation of active pyruvate carboxylase from its apoenzyme, ATP and (+)-biotin which is catalysed by holoenzyme synthetase; this effect is counteracted by l-aspartate. 2. The Hill coefficients (apparent n values) were approximately 2 for acetyl-CoA and 4 for l-aspartate; the n value for each effector remained constant when the concentration of the other effector was varied. 3. Active pyruvate carboxylase was formed also when the apoenzyme was incubated with holoenzyme synthetase and synthetic biotinyl-5′-AMP; acetyl-CoA and l-aspartate affected this process as they did the overall reaction from (+)-biotin and ATP. 4. When hydroxylamine replaced the apoenzyme, holoenzyme synthetase catalysed the formation of biotinylhydroxamate from (+)-biotin and ATP. This reaction was not affected by the allosteric effectors. 5. The apoenzyme was protected against thermal denaturation by acetyl-CoA and, to a lesser degree, by l-aspartate. The holoenzyme synthetase was not markedly protected by these effectors. 6. It is concluded that the allosteric effectors act on the apoenzyme and not the synthetase.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献