Making protons tag along with electrons

Author:

Guberman-Pfeffer Matthew J.12,Malvankar Nikhil S.12ORCID

Affiliation:

1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, U.S.A.

2. Microbial Sciences Institute, Yale University, West Haven, CT, U.S.A.

Abstract

Every living cell needs to get rid of leftover electrons when metabolism extracts energy through the oxidation of nutrients. Common soil microbes such as Geobacter sulfurreducens live in harsh environments that do not afford the luxury of soluble, ingestible electron acceptors like oxygen. Instead of resorting to fermentation, which requires the export of reduced compounds (e.g. ethanol or lactate derived from pyruvate) from the cell, these organisms have evolved a means to anaerobically respire by using nanowires to export electrons to extracellular acceptors in a process called extracellular electron transfer (EET) [ 1]. Since 2005, these nanowires were thought to be pili filaments [ 2]. But recent studies have revealed that nanowires are composed of multiheme cytochromes OmcS [ 3, 4] and OmcZ [ 5] whereas pili remain inside the cell during EET and are required for the secretion of nanowires [ 6]. However, how electrons are passed to these nanowires remains a mystery ( Figure 1A). Periplasmic cytochromes (Ppc) called PpcA-E could be doing the job, but only two of them (PpcA and PpcD) can couple electron/proton transfer — a necessary condition for energy generation. In a recent study, Salgueiro and co-workers selectively replaced an aromatic with an aliphatic residue to couple electron/proton transfer in PpcB and PpcE (Biochem. J. 2021, 478 (14): 2871–2887). This significant in vitro success of their protein engineering strategy may enable the optimization of bioenergetic machinery for bioenergy, biofuels, and bioelectronics applications.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3