Ascorbate up-regulates MLH1 (Mut L homologue-1) and p73: implications for the cellular response to DNA damage

Author:

CATANI M. Valeria1,COSTANZO Antonio2,SAVINI Isabella3,LEVRERO Massimo2,DE LAURENZI Vincenzo3,WANG Jean Y.J.4,MELINO Gerry3,AVIGLIANO Luciana3

Affiliation:

1. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine & Biochemical Sciences, University of Rome Tor Vergata, Via Tor Vergata 135, 00133 Rome, Italy

2. Laboratory of Gene Expression, Fondazione A. Cesalpino, University of Rome La Sapienza, 00161 Rome, Italy

3. Department of Experimental Medicine & Biochemical Sciences, University of Rome Tor Vergata, Via Tor Vergata 135, 00133 Rome, Italy

4. Department of Biology and the Cancer Center, University of California, La Jolla, CA 92093-90322, U.S.A.

Abstract

We have found previously that ascorbic acid (vitamin C), as well as acting as a radical scavenger, may modulate the expression of several genes [i.e. fra-1, glutathione S-transferase Pi (GSTpi) and Mut L homologue-1 (MLH1)] in human keratinocytes. In the present paper, we demonstrate that MLH1, as well as its downstream target p73, can be positively modulated by this antioxidant vitamin, indeed, up-regulation of the two mRNAs was observed after just 2h, and increased further up to 16h of treatment. Modulation of MLH1 and p73 gene expression improves cellular susceptibility to apoptosis triggered by the DNA-damaging agent cisplatin. Indeed, in ascorbate-supplemented cells, increased cisplatin-induced apoptosis was seen, involving activation of the MLH1/c-Abl/p73 signalling cascade. Our results were further confirmed by studies performed on genetically defined mutants, i.e. mouse embryo fibroblasts derived from knock-out animals for c-Abl or p53, as well as human colon carcinoma cell lines deficient in MLH1. The increased sensitivity to cisplatin observed in ascorbate-loaded cells appeared to be dependent exclusively on MLH1 and c-Abl expression, and independent of p53. These data suggest a potential mechanism accounting for the anti-carcinogenic and anti-cancer activities of vitamin C.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3