Observations on iron uptake, iron metabolism, cytochrome c content, cytochrome a content and cytochrome c-oxidase activity in regenerating rat liver

Author:

Gear ARL1

Affiliation:

1. Department of Biochemistry, University of Sheffield

Abstract

1. Differential and density-gradient centrifugation were used to fractionate mitochondria and fluffy layer from normal and regenerating rat liver. The iron, cytochrome a and cytochrome c contents and cytochrome c-oxidase activity were studied as well as the uptake of (59)Fe into protein and cytochrome c. 2. A certain degree of heterogeneity was evident between the heavy-mitochondrial and light-mitochondrial fractions, and in their behaviour during liver regeneration. 3. The specific content of light-mitochondrial iron and cytochrome a was 1.3-1.4 times that of heavy mitochondria. Changes in cytochrome c-oxidase activity closely followed those of cytochrome a content during liver regeneration, but not for light mitochondria after 10 days. 4. Radioactive iron ((59)Fe) was most actively taken up by well-washed light mitochondria during early liver regeneration. After 22 days fluffy layer became preferentially labelled. This substantiates the view that fluffy layer partially represents broken-down mitochondria. 5. During early regeneration, light-mitochondrial fractions separated along a density gradient were about 3 times as radioactive, and showed distinct heterogeneity of (59)Fe-labelling, in contrast with near homogeneity for heavy mitochondria. 6. Immediately after partial hepatectomy fractions corresponding to density 1.155 were 5-10 times as radioactive as particles of greater density. The radioactivity decreased sharply after 6 days. 7. These particles of low density possessed higher NADH-cytochrome c-reductase (1.5-5-fold) and succinate-dehydrogenase (1.1-2-fold) activities than typical mitochondrial fractions. Their succinate-cytochrome c-reductase and cytochrome c-oxidase activities were slightly lower. 8. The results are discussed in relation to mitochondrial morphogenesis, and a possible route from submitochondrial particles is suggested.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3