Inhibition of Indoxyl Sulfate-Induced Reactive Oxygen Species-Related Ferroptosis Alleviates Renal Cell Injury In Vitro and Chronic Kidney Disease Progression In Vivo

Author:

Tsai Li-Ting1,Weng Te-I2,Chang Ting-Yu1,Lan Kuo-Cheng3ORCID,Chiang Chih-Kang14ORCID,Liu Shing-Hwa156ORCID

Affiliation:

1. Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan

2. Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan

3. Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan

4. Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, College of Medicine and Hospital, National Taiwan University, Taipei 100, Taiwan

5. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan

6. Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100, Taiwan

Abstract

The accumulation of the uremic toxin indoxyl sulfate (IS) is a key pathological feature of chronic kidney disease (CKD). The effect of IS on ferroptosis and the role of IS-related ferroptosis in CKD are not well understood. We used a renal tubular cell model and an adenine-induced CKD mouse model to explore whether IS induces ferroptosis and injury and affects iron metabolism in the renal cells and the kidneys. Our results showed that exposure to IS induced several characteristics for ferroptosis, including iron accumulation, an impaired antioxidant system, elevated reactive oxygen species (ROS) levels, and lipid peroxidation. Exposure to IS triggered intracellular iron accumulation by upregulating transferrin and transferrin receptors, which are involved in cellular iron uptake. We also observed increased levels of the iron storage protein ferritin. The effects of IS-induced ROS generation, lipid peroxidation, ferroptosis, senescence, ER stress, and injury/fibrosis were effectively alleviated by treatments with an iron chelator deferoxamine (DFO) in vitro and the adsorbent charcoal AST-120 (scavenging the IS precursor) in vivo. Our findings suggest that IS triggers intracellular iron accumulation and ROS generation, leading to the induction of ferroptosis, senescence, ER stress, and injury/fibrosis in CKD kidneys. AST-120 administration may serve as a potential therapeutic strategy.

Funder

the National Science and Technology Council

the Tri-Service General Hospital

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3