Abstract
Ca2+ uptake in brush-border vesicles isolated from rat duodena was studied by a rapid-filtration technique. Ca2+ uptake showed saturation kinetics, was dependent on the pH and ionic strength of the medium and was independent of metabolic energy. Uptake activity was readily inhibited by Ruthenium Red, La3+, tetracaine, EGTA, choline chloride and Na+ or K+. The effect of variations in medium osmolarity on Ca2+ uptake and the ionophore A23187-induced efflux of the cation from preloaded vesicles indicated that the Ca2+-uptake process involved binding to membrane components, as well as transport into an osmotically active space. Scatchard-plot analyses of the binding data suggested at least two classes of Ca2+-binding sites. The high-affinity sites, Ka = (2.7 +/- 1.1) x 10(4) M-1 (mean +/- S.D.) bound 3.2 +/- 0.8 nmol of Ca2+/mg of protein, whereas the low-affinity sites (Ka = 60 +/- 6 M-1) bound 110 +/- 17 nmol of Ca2+/mg of protein. In the presence of 100 mM-NaCl, 1.7 and 53 nmol of Ca2+/mg of protein were bound to the high- and low-affinity sites respectively. Decreased Ca2+-uptake activity was observed in vesicles isolated from vitamin D-deficient as compared with vitamin D-replete animals and intraperitoneal administration of 1,25-dihydroxycholecalciferol to vitamin D-deficient rats 16 h before membrane isolation stimulated the initial rate of Ca2+ uptake significantly. The data indicated that Ca2+ entry and/or binding was passive and may involve a carrier-mediated Ca2+-uptake component that is associated with the brush-border membrane. Altering the electrochemical potential difference across the membrane by using anions of various permeability and selected ionophores appeared to increase primarily binding to the membrane rather than transport into the intravesicular space. Since there is considerable binding of Ca2+ to the vesicle interior, a comprehensive analysis of the transport properties of the brush-border membrane remains difficult at present.
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献