Renal mitochondrial injury in the pathogenesis of CKD: mtDNA and mitomiRs

Author:

Irazabal Maria V.1,Chade Alejandro R.2,Eirin Alfonso1ORCID

Affiliation:

1. Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A.

2. Department of Physiology and Biophysics, Medicine, and Radiology, University of Mississippi Medical Center, Jackson, MS, U.S.A.

Abstract

Abstract Chronic kidney disease (CKD) is a public health concern that affects over 200 million people worldwide and is associated with a tremendous economic burden. Therefore, deciphering the mechanisms underpinning CKD is crucial to decelerate its progression towards end-stage renal disease (ESRD). Renal tubular cells are populated with a high number of mitochondria, which produce cellular energy and modulate several important cellular processes, including generation of reactive oxygen species (ROS), calcium homeostasis, proliferation, and apoptosis. Over the past few years, increasing evidence has implicated renal mitochondrial damage in the pathogenesis of common etiologies of CKD, such as diabetes, hypertension, metabolic syndrome (MetS), chronic renal ischemia, and polycystic kidney disease (PKD). However, most compelling evidence is based on preclinical studies because renal biopsies are not routinely performed in many patients with CKD. Previous studies have shown that urinary mitochondrial DNA (mtDNA) copy numbers may serve as non-invasive biomarkers of renal mitochondrial dysfunction. Emerging data also suggest that CKD is associated with altered expression of mitochondria-related microRNAs (mitomiRs), which localize in mitochondria and regulate the expression of mtDNA and nucleus-encoded mitochondrial genes. This review summarizes relevant evidence regarding the involvement of renal mitochondrial injury and dysfunction in frequent forms of CKD. We further provide an overview of non-invasive biomarkers and potential mechanisms of renal mitochondrial damage, especially focusing on mtDNA and mitomiRs.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3