Affiliation:
1. Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
2. Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
Abstract
Key Points
Renovascular disease impairs the capacity of human adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic murine kidneys.miR-378h modulated the capacity of renovascular disease adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic kidneys in vivo.
Background
Renovascular disease leads to renal ischemia, hypertension, and eventual kidney failure. Autologous transplantation of adipose tissue–derived mesenchymal stem/stromal cells (MSCs) improves perfusion and oxygenation in stenotic human kidneys, but associated atherosclerosis and hypertension might blunt their effectiveness. We hypothesized that renovascular disease alters the human MSC transcriptome and impairs their reparative potency.
Methods
MSCs were harvested from subcutaneous abdominal fat of patients with renovascular disease and healthy volunteers (n=3 each), characterized and subsequently injected (5×105/200 μl) into mice 2 weeks after renal artery stenosis or sham surgery (n=6/group). Two weeks later, mice underwent imaging and tissue studies. MSCs from healthy volunteers and in those with renovascular disease were also characterized by mRNA/microRNA (miRNA) sequencing. Based on these, MSC proliferation and mitochondrial damage were assessed in vitro before and after miRNA modulation and in vivo in additional renal artery stenosis mice administered with MSCs from renovascular disease pretreated with miR-378h mimic (n=5) or inhibitor (n=4).
Results
MSCs engrafted in stenotic mouse kidneys. Healthy volunteer MSCs (but not renovascular disease MSCs) decreased BP, improved serum creatinine levels and stenotic-kidney cortical perfusion and oxygenation, and attenuated peritubular capillary loss, tubular injury, and fibrosis. Genes upregulated in renovascular disease MSCs versus healthy volunteer MSCs were mostly implicated in transcription and cell proliferation, whereas those downregulated encoded mainly mitochondrial proteins. Upregulated miRNAs, including miR-378h, primarily target nuclear-encoded mitochondrial genes, whereas downregulated miRNAs mainly target genes implicated in transcription and cell proliferation. MSC proliferation was similar, but their mitochondrial structure and reparative function both in vivo and in vitro improved after miR-378h inhibition.
Conclusions
Renovascular disease impaired the reparative capacity of human MSCs, possibly by dysregulating miR-378h that targets mitochondrial genes.
Funder
NHLBI Division of Intramural Research
National Institute of Diabetes and Digestive and Kidney Diseases
National Institute on Aging
Regenerative Medicine Minnesota
Publisher
Ovid Technologies (Wolters Kluwer Health)