Capacitative Ca2+ entry regulates Ca2+-sensitive adenylyl cyclases

Author:

Cooper D M1,Yoshimura M1,Zhang Y1,Chiono M1,Mahey R1

Affiliation:

1. Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A.

Abstract

A number of the currently described adenylyl cyclase species can be regulated by Ca2+ in the submicromolar concentration range in in vitro assays. The regulatory significance of these observations hinges on whether a physiological elevation in intracellular Ca2+ can regulate these cyclase activities in intact cells. However, achieving a physiological elevation in cytosolic Ca2+ is complicated by the fact that hormonal increases in cytosolic Ca2+ can be accompanied by additional effects, such as liberation of beta gamma-subunits of G-proteins and activation of protein kinase C, which can have disparate type-specific effects on cyclase activities. Therefore we have devised a strategy based on capacitative Ca2+ entry to show that, when types I and VI adenylyl cyclase are expressed in human embryonic kidney 293 cells, they are stimulated and inhibited respectively by Ca2+ entry. Blockade of Ca2+ entry by La3+ ions blocks the effects of Ca2+ entry on cyclic AMP synthesis. These studies establish that adenylyl cyclases deemed to be sensitive to Ca2+ in in vitro assays can be regulated by physiological Ca2+ entry, and therefore, such cyclases are poised to respond to changes in intracellular Ca2+ in tissues in which they are expressed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collecting duct water permeability inhibition by EGF is associated with decreased cAMP, PKA activity, and AQP2 phosphorylation at Ser269;American Journal of Physiology-Renal Physiology;2024-03-01

2. Crosstalk between the mTOR pathway and primary cilia in human diseases;Current Topics in Developmental Biology;2023

3. Reciprocal Regulation between Primary Cilia and mTORC1;Genes;2020-06-26

4. Cortical cytoskeleton dynamics regulates plasma membrane calcium ATPase isoform-2 (PMCA2) activity;Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;2017-08

5. The functions of store-operated calcium channels;Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3