Cancer cells activate p53 in response to 10-formyltetrahydrofolate dehydrogenase expression

Author:

Oleinik Natalia V.1,Krupenko Natalia I.1,Priest David G.1,Krupenko Sergey A.1

Affiliation:

1. Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A.

Abstract

A folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase; EC 1.5.1.6), is not a typical tumour suppressor, but it has two basic characteristics of one, i.e. it is down-regulated in tumours and its expression is selectively cytotoxic to cancer cells. We have recently shown that ectopic expression of FDH in A549 lung cancer cells induces G1 arrest and apoptosis that was accompanied by elevation of p53 and its downstream target, p21. It was not known, however, whether FDH-induced apoptosis is p53-dependent or not. In the present study, we report that FDH-induced suppressor effects are strictly p53-dependent in A549 cells. Both knockdown of p53 using an RNAi (RNA interference) approach and disabling of p53 function by dominant-negative inhibition with R175H mutant p53 prevented FDH-induced cytotoxicity in these cells. Ablation of the FDH-suppressor effect is associated with an inability to activate apoptosis in the absence of functional p53. We have also shown that FDH elevation results in p53 phosphorylation at Ser-6 and Ser-20 in the p53 transactivation domain, and Ser-392 in the C-terminal domain, but only Ser-6 is strictly required to mediate FDH effects. Also, translocation of p53 to the nuclei and expression of the pro-apoptotic protein PUMA (Bcl2 binding component 3) was observed after induction of FDH expression. Elevation of FDH in p53 functional HCT116 cells induced strong growth inhibition, while growth of p53-deficient HCT116 cells was unaffected. This implies that activation of p53-dependent pathways is a general downstream mechanism in response to induction of FDH expression in p53 functional cancer cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3