Exploratory Metabolomics Underscores the Folate Enzyme ALDH1L1 as a Regulator of Glycine and Methylation Reactions

Author:

Rushing Blake R.ORCID,Fogle Halle M.ORCID,Sharma JaspreetORCID,You Mikyoung,McCormac Jonathan P.ORCID,Molina Sabrina,Sumner Susan,Krupenko Natalia I.,Krupenko Sergey A.ORCID

Abstract

Folate (vitamin B9) is involved in one-carbon transfer reactions and plays a significant role in nucleic acid synthesis and control of cellular proliferation, among other key cellular processes. It is now recognized that the role of folates in different stages of carcinogenesis is complex, and more research is needed to understand how folate reactions become dysregulated in cancers and the metabolic consequences that occur as a result. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism expressed in many tissues, is ubiquitously downregulated in cancers and is not expressed in cancer cell lines. The RT4 cell line (derived from papillary bladder cancer) which expresses high levels of ALDH1L1 represents an exception, providing an opportunity to explore the metabolic consequences of the loss of this enzyme. We have downregulated this protein in RT4 cells (shRNA driven knockdown or CRISPR driven knockout) and compared metabolomes of ALDH1L1-expressing and -deficient cells to determine if metabolic changes linked to the loss of this enzyme might provide proliferative and/or survival advantages for cancer cells. In this study, cell extracts were analyzed using Ultra High Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-HR-MS). A total of 13,339 signals were identified or annotated using an in-house library and public databases. Supervised and unsupervised multivariate analysis revealed metabolic differences between RT4 cells and ALDH1L1-deficient clones. Glycine (8-fold decrease) and metabolites derived from S-adenosylmethionine utilizing pathways were significantly decreased in the ALDH1L1-deficient clones, compared with RT4 cells. Other changes linked to ALDH1L1 downregulation include decreased levels of amino acids, Krebs cycle intermediates, and ribose-5-phosphate, and increased nicotinic acid. While the ALDH1L1-catalyzed reaction is directly linked to glycine biosynthesis and methyl group flux, its overall effect on cellular metabolism extends beyond immediate metabolic pathways controlled by this enzyme.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference76 articles.

1. 10-Formyltetrahydrofolate Dehydrogenase, One of The Major Folate Enzymes, Is Down-Regulated In Tumor Tissues and Possesses Suppressor Effects On Cancer Cells;Krupenko;Cell Growth Differ.,2002

2. Fdh: An Aldehyde Dehydrogenase Fusion Enzyme In Folate Metabolism;Krupenko;Chem. Biol. Interact.,2009

3. Loss of Aldh1l1 Folate Enzyme Confers A Selective Metabolic Advantage For Tumor Progression;Krupenko;Chem. Biol. Interact.,2019

4. Regulation of Folate-Mediated One-Carbon Metabolism By 10-Formyltetrahydrofolate Dehydrogenase;Anguera;J. Biol. Chem.,2006

5. Activation of P21-Dependent G1/G2 Arrest In The Absence of Dna Damage As An Antiapoptotic Response To Metabolic Stress;Hoeferlin;Genes Cancer,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3