Weaning induces NOS-2 expression through NF-κB modulation in the lactating mammary gland: importance of GSH

Author:

Zaragozá Rosa1,Miralles Vicente J.1,Rus A. Diana2,García Concha1,Carmena Rafael3,García-Trevijano Elena R.1,Barber Teresa1,Pallardó Federico V.2,Torres Luís1,Viña Juan R.1

Affiliation:

1. Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain

2. Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain

3. Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain

Abstract

At the end of lactation the mammary gland undergoes involution, a process characterized by apoptosis of secretory cells and tissue remodelling. To gain insight into this process, we analysed the gene expression profile by oligonucleotide microarrays during lactation and after forced weaning. Up-regulation of inflammatory mediators and acute-phase response genes during weaning was found. Expression of IκBα (inhibitory κBα), a protein known to modulate NF-κB (nuclear factor-κB) nuclear translocation, was significantly up-regulated. On the other hand, there was a time-dependent degradation of IκBα protein levels in response to weaning, suggesting a role for NF-κB. Furthermore, we have demonstrated, using chromatin immunoprecipitation assays, binding of NF-κB to the NOS-2 (inducible nitric oxide synthase) promoter at the early onset of events triggered during weaning. The three isoforms of NOS are constitutively present in the lactating mammary gland; however, while NOS-2 mRNA and protein levels and, consequently, NO production are increased during weaning, NOS-3 protein levels are diminished. Western blot analyses have demonstrated that protein nitration is increased in the mammary gland during weaning, but this is limited to a few specific tyrosine-nitrated proteins. Interestingly, inhibition of GSH synthesis at the peak of lactation partially mimics these findings, highlighting the role of NO production and GSH depletion during involution.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3