The role of lactobacilli in inhibiting skin pathogens

Author:

Delanghe Lize12,Spacova Irina1,Van Malderen Joke1,Oerlemans Eline1,Claes Ingmar12,Lebeer Sarah1ORCID

Affiliation:

1. Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

2. YUN NV, Galileilaan 15, B-2845 Niel, Belgium

Abstract

The human skin microbiota forms a key barrier against skin pathogens and is important in modulating immune responses. Recent studies identify lactobacilli as endogenous inhabitants of healthy skin, while inflammatory skin conditions are often associated with a disturbed skin microbiome. Consequently, lactobacilli-based probiotics are explored as a novel treatment of inflammatory skin conditions through their topical skin application. This review focuses on the potential beneficial role of lactobacilli (family Lactobacillaceae) in the skin habitat, where they can exert multifactorial local mechanisms of action against pathogens and inflammation. On one hand, lactobacilli have been shown to directly compete with skin pathogens through adhesion inhibition, production of antimicrobial metabolites, and by influencing pathogen metabolism. The competitive anti-pathogenic action of lactobacilli has already been described mechanistically for common different skin pathogens, such as Staphylococcus aureus, Cutibacterium acnes, and Candida albicans. On the other hand, lactobacilli also have an immunomodulatory capacity associated with a reduction in excessive skin inflammation. Their influence on the immune system is mediated by bacterial metabolites and cell wall-associated or excreted microbe-associated molecular patterns (MAMPs). In addition, lactobacilli can also enhance the skin barrier function, which is often disrupted as a result of infection or in inflammatory skin diseases. Some clinical trials have already translated these mechanistic insights into beneficial clinical outcomes, showing that topically applied lactobacilli can temporarily colonize the skin and promote skin health, but more and larger clinical trials are required to generate in vivo mechanistic insights and in-depth skin microbiome analysis.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3