PKCβ inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfuntion in rats with streptozotocin-induced diabetes

Author:

Liu Yanan1,Lei Shaoqing1,Gao Xia1,Mao Xiaowen1,Wang Tingting1,Wong Gordon T.12,Vanhoutte Paul M.13,Irwin Michael G.12,Xia Zhengyuan12

Affiliation:

1. Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China

2. Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China

3. Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China

Abstract

Oxidative stress plays critical roles in the development of diabetic cardiovascular complications, including myocardial hypertrophy. The β isoform of PKC (protein kinase C) is preferentially overexpressed in the myocardium of diabetic subjects accompanied with increased activation of the pro-oxidant enzyme NADPH oxidase, which may exacerbate oxidative stress. We hypothesized that myocardial PKCβ is a major upstream mediator of oxidative stress in diabetes and that PKCβ inhibition can attenuate myocardial hypertrophy and dysfunction. Control or streptozotocin-induced diabetic rats were treated with the selective PKCβ inhibitor RBX (ruboxistaurin; 1 mg/kg of body weight per day) or the antioxidant NAC (N-acetylcysteine) for 4 weeks. LV (left ventricular) dimensions and functions were detected by echocardiography. 15-F2t-isoprostane (a specific index of oxidative stress) and myocardial activities of superoxide dismutase as well as protein levels of NADPH oxidase were assessed by immunoassay or Western blotting. Echocardiography revealed that the LV mass/body weight ratio was significantly increased in diabetic rats (P<0.01 compared with the control group) in parallel with the impaired LV relaxation. A significant increase in cardiomyocyte cross-sectional area was observed in diabetic rats accompanied by an increased production of O2− (superoxide anion) and 15-F2t-isoprostane (all P<0.05 compared with the control group). RBX normalized these changes with concomitant inhibition of PKCβ2 activation and prevention of NADPH oxidase subunit p67phox membrane translocation and p22phox overexpression. The effects of RBX were comparable with that of NAC, except that NAC was inferior to RBX in attenuating cardiac dysfunction. It is concluded that RBX can ameliorate myocardial hypertrophy and dysfunction in diabetes, which may represent a novel therapy in the prevention of diabetic cardiovascular complications.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3