Affiliation:
1. From the Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama
Abstract
Hyperglycemia alters cardiac function and often leads to diabetic cardiomyopathy as cardiomyocyte apoptosis causes a hypertrophied heart to deteriorate to dilation and failure. Paradoxically, many short-term animal models of hyperglycemia protect against ischemia-induced damage, including apoptosis, by limiting Ca2+ overload. We have determined that, like nonexcitable cells, both neonatal and adult cardiomyocytes respond to depletion of sarcoplasmic/endoplasmic reticulum Ca2+ stores with an influx of extracellular Ca2+ through channels distinct from voltage-gated Ca2+ channels, a process termed capacitative Ca2+ entry (CCE). Here, we demonstrate that in neonatal rat cardiomyocytes, hyperglycemia decreased CCE induced by angiotensin II or the Ca2+ATPase inhibitor thapsigargin. Hyperglycemia also significantly blunted Ca2+-dependent hypertrophic responses by ∼60%, as well as the Ca2+-sensitive nuclear translocation of a chimeric protein bearing the nuclear localization signal of a nuclear factor of activated T-cells transcription factor. The attenuation of CCE by hyperglycemia was prevented by azaserine, an inhibitor of hexosamine biosynthesis, and partially by inhibitors of oxidative stress. This complements previous work showing that increasing hexosamine metabolites in neonatal cardiomyocytes also inhibited CCE. The inhibition of CCE by hyperglycemia thus provides a likely explanation for the transition to diabetic cardiomyopathy as well as to the protection afforded to injury after ischemia/reperfusion in diabetic models.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献