Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species

Author:

VANGHELUWE Peter1,SCHUERMANS Marleen1,ZÁDOR Ernö2,WAELKENS Etienne3,RAEYMAEKERS Luc1,WUYTACK Frank1

Affiliation:

1. Laboratory of Physiology, O/N Gasthuisberg, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium

2. Institute of Biochemistry, Faculty of Medicine, University of Szeged, Dom ter 9, P.O. Box 427, H-6701 Szeged, Hungary

3. Laboratory of Biochemistry, O/N Gasthuisberg, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium

Abstract

The widely held view that SLN (sarcolipin) would be the natural inhibitor of SERCA1 (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase 1), and PLB (phospholamban) its counterpart for SERCA2 inhibition is oversimplified and partially wrong. The expression of SLN and PLB mRNA and protein relative to SERCA1 or SERCA2 was assessed in ventricle, atrium, soleus and EDL (extensor digitorum longus) of mouse, rat, rabbit and pig. SLN protein levels were quantified by means of Western blotting using what appears to be the first successfully generated antibody directed against SLN. Our data confirm the co-expression of PLB and SERCA2a in cardiac muscle and the very low levels (in pig and rabbit) or the absence (in rat and mouse) of PLB protein in the slow skeletal muscle. In larger animals, the SLN mRNA and protein expression in the soleus and EDL correlates with SERCA1a expression, but, in rodents, SLN mRNA and protein show the highest abundance in the atria, which are devoid of SERCA1. In the rodent atria, SLN could therefore potentially interact with PLB and SERCA2a. No SLN was found in the ventricles of the different species studied, and there was no compensatory SLN up-regulation for the loss of PLB in PLB−/− mouse. In addition, we found that SLN expression was down-regulated at the mRNA and protein level in the atria of hypertrophic hearts of SERCA2b/b mice. These data suggest that superinhibition of SERCA by PLB-SLN complexes could occur in the atria of the smaller rodents, but not in those of larger animals.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3