Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA

Author:

KISIELOW Malgorzata12,KLEINER Sandra1,NAGASAWA Michiaki3,FAISAL Amir4,NAGAMINE Yoshikuni4

Affiliation:

1. These authors contributed equally to this work.

2. Present address: Istituto di Ricerca in Biomedicina, Via Vela 6, 6500 Belinzona, Switzerland.

3. Present address: Kyorin Pharmaceutical Central Research Laboratories, 2399-1 Mitarai, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.

4. Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66 CH-4058 Basel, Switzerland

Abstract

Many eukaryotic genes are expressed as multiple isoforms through the differential utilization of transcription/translation initiation sites or alternative splicing. The conventional approach for studying individual isoforms in a clean background (i.e. without the influence of other isoforms) has been to express them in cells or whole organisms in which the target gene has been deleted; this is time-consuming. Recently an efficient post-transcriptional gene-silencing method has been reported that employs a small interfering double-stranded RNA (siRNA). On the basis of this method we report a rapid alternative approach for isoform-specific gene expression. We show how the adaptor protein ShcA can be suppressed and expressed in an isoform-specific manner in a human cell line. ShcA exists in three isoforms, namely p66, p52 and p46, which differ only in their N-terminal regions and are derived from two different transcripts, namely p66 and p52/p46 mRNAs. An siRNA with a sequence shared by the two transcripts suppressed all of them. However, another siRNA whose sequence was present only in p66 mRNA suppressed only the p66 isoform, suggesting that the siRNA signal did not propagate to other regions of the target mRNA. The expression of individual isoforms was achieved by first down-regulating all isoforms by the common siRNA and then transfecting with an expression vector for each isoform that harboured silent mutations at the site corresponding to the siRNA. This allowed functional analysis of individual ShcA isoforms and may be more generally applicable for studying genes encoding multiple proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3