A machine learning approach predicts essential genes and pharmacological targets in cancer

Author:

Gilvary Coryandar,Madhukar Neel S.,Gayvert Kaitlyn,Foronda Miguel,Perez Alexendar,Leslie Christina S.,Dow Lukas,Pandey Gaurav,Elemento Olivier

Abstract

ABSTRACTLoss-of-function (LoF) screenings have the potential to reveal novel cancer-specific vulnerabilities, prioritize drug treatments, and inform precision medicine therapeutics. These screenings were traditionally done using shRNAs, but with the recent emergence of CRISPR technology there has been a shift in methodology. However, recent analyses have found large inconsistencies between CRISPR and shRNA essentiality results. Here, we examined the DepMap project, the largest cancer LoF effort undertaken to date, and find a lack of correlation between CRISPR and shRNA LoF results; we further characterized differences between genes found to be essential by either platform. We then introduce ECLIPSE, a machine learning approach, which combines genomic, cell line, and experimental design features to predict essential genes and platform specific essential genes in specific cancer cell lines. We applied ECLIPSE to known drug targets and found that our approach strongly differentiated drugs approved for cancer versus those that have not, and can thus be leveraged to identify potential cancer repurposing opportunities. Overall, ECLIPSE allows for a more comprehensive analysis of gene essentiality and drug development; which neither platform can achieve alone.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3