Microtubules pull the strings: disordered sequences as efficient couplers of microtubule-generated force

Author:

Volkov Vladimir A.1ORCID

Affiliation:

1. Department of Bionanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands

Abstract

Abstract Microtubules are dynamic polymers that grow and shrink through addition or loss of tubulin subunits at their ends. Microtubule ends generate mechanical force that moves chromosomes and cellular organelles, and provides mechanical tension. Recent literature describes a number of proteins and protein complexes that couple dynamics of microtubule ends to movements of their cellular cargoes. These ‘couplers’ are quite diverse in their microtubule-binding domains (MTBDs), while sharing similarity in function, but a systematic understanding of the principles underlying their activity is missing. Here, I review various types of microtubule couplers, focusing on their essential activities: ability to follow microtubule ends and capture microtubule-generated force. Most of the couplers require presence of unstructured positively charged sequences and multivalency in their microtubule-binding sites to efficiently convert the microtubule-generated force into useful connection to a cargo. An overview of the microtubule features supporting end-tracking and force-coupling, and the experimental methods to assess force-coupling properties is also provided.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3