The importance of colonic butyrate transport to the regulation of genes associated with colonic tissue homoeostasis

Author:

Daly K.1,Cuff M.A.1,Fung F.1,Shirazi-Beechey S.P.1

Affiliation:

1. Epithelial Function and Development Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 7ZJ, U.K.

Abstract

The transition from normality to malignancy in colorectal cancer is characterized by alterations in the expression of genes associated with the maintenance of tissue homoeostasis. Butyrate, a product of microbial fermentation of dietary fibre in the colon, is known to regulate a number of genes associated with the processes of proliferation, differentiation and apoptosis of colonic epithelial cells, and, hence, homoeostasis of colonic tissue. We have shown previously that the transport of butyrate into colonocytes is of fundamental importance to butyrate's regulatory ability, and therefore sought to assess the expression profile of butyrate-responsive genes in colon cancer tissue, where the expression of the colonic luminal-membrane butyrate transporter, MCT1 (monocarboxylate transporter 1), is significantly down-regulated. In the present paper, we first employed microarray analysis to assess global changes in butyrate-responsive genes using HT29 human colon carcinoma cells treated with butyrate. There was consistency in the butyrate response of selected genes in two other human colonic cell lines (HCT116 and AA/C1) using quantitative real-time PCR. Furthermore, we report that expression levels of selected butyrate-responsive genes involved in the processes of proliferation, differentiation and apoptosis, are deregulated in colon cancer tissue, correlating with decreased expression of MCT1. These findings support our hypothesis that a reduction in MCT1 expression, and hence butyrate transport, can lead to a reduction in the intracellular butyrate levels required to regulate gene expression. Collectively, our results highlight the important contribution of butyrate transport to the maintenance of tissue homoeostasis and disease prevention.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3