Phosphorylation by protein kinase C and cyclic AMP-dependent protein kinase of synthetic peptides derived from the linker region of human P-glycoprotein

Author:

Chambers T C1,Pohl J2,Glass D B1,Kuo J F1

Affiliation:

1. Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, U.S.A.

2. Microchemical Facility, Winship Cancer Center, Emory University School of Medicine, Atlanta, GA 30322, U.S.A.

Abstract

Specific sites in the linker region of human P-glycoprotein phosphorylated by protein kinase C (PKC) were identified by means of a synthetic peptide substrate, PG-2, corresponding to residues 656-689 from this region of the molecule. As PG-2 has several sequences of the type recognized by the cyclic AMP-dependent protein kinase (PKA), PG-2 was also tested as a substrate for PKA. PG-2 was phosphorylated by purified PKC in a Ca2+/phospholipid-dependent manner, with a Km of 1.3 microM, and to a maximum stoichiometry of 2.9 +/- 0.1 mol of phosphate/mol of peptide. Sequence analysis of tryptic fragments of PG-2 phosphorylated by PKC identified Ser-661, Ser-667 and Ser-671 as the three sites of phosphorylation. PG-2 was also found to be phosphorylated by purified PKA in a cyclic AMP-dependent manner, with a Km of 21 microM, and to a maximum stoichiometry of 2.6 +/- 0.2 mol of phosphate/mol of peptide. Ser-667, Ser-671 and Ser-683 were phosphorylated by PKA. Truncated peptides of PG-2 were utilized to confirm that Ser-661 was PKC-specific and Ser-683 was PKA-specific. Further studies showed that PG-2 acted as a competitive substrate for the P-glycoprotein kinase present in membranes from multidrug-resistant human KB cells. The membrane kinase phosphorylated PG-2 mainly on Ser-661, Ser-667 and Ser-671. These results show that human P-glycoprotein can be phosphorylated by at least two protein kinases, stimulated by different second-messenger systems, which exhibit both overlapping and unique specificities for phosphorylation of multiple sites in the linker region of the molecule.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanistic insights into P-glycoprotein ligand transport and inhibition revealed by enhanced molecular dynamics simulations;Computational and Structural Biotechnology Journal;2024-12

2. Microbial Metabolites Orchestrate a Distinct Multi-Tiered Regulatory Network in the Intestinal Epithelium That Directs P-Glycoprotein Expression;mBio;2022-08-30

3. Molecular Regulation of Canalicular ABC Transporters;International Journal of Molecular Sciences;2021-02-20

4. Perplexing Role of P-Glycoprotein in Tumor Microenvironment;Frontiers in Oncology;2020-03-05

5. Efflux transporters in cancer resistance: Molecular and functional characterization of P-glycoprotein;Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3