The synaptotagmin 1 linker may function as an electrostatic zipper that opens for docking but closes for fusion pore opening

Author:

Lai Ying1,Lou Xiaochu1,Jho Yongseok2,Yoon Tae-Young34,Shin Yeon-Kyun15

Affiliation:

1. Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, U.S.A.

2. Department of Physics, Pohang University of Science and Technology, Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784, South Korea

3. National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea

4. Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea

5. Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, South Korea

Abstract

Syt1 (synaptotagmin 1), a major Ca2+ sensor for fast neurotransmitter release, contains tandem Ca2+-binding C2 domains (C2AB), a single transmembrane α-helix and a highly charged 60-residue-long linker in between. Using single-vesicle-docking and content-mixing assays we found that the linker region of Syt1 is essential for its two signature functions: Ca2+-independent vesicle docking and Ca2+-dependent fusion pore opening. The linker contains the basic-amino-acid-rich N-terminal region and the acidic-amino-acid-rich C-terminal region. When the charge segregation was disrupted, fusion pore opening was slowed, whereas docking was unchanged. Intramolecular disulfide cross-linking between N- and C-terminal regions of the linker or deletion of 40 residues from the linker reduced docking while enhancing pore opening, although the changes were subtle. EPR analysis showed Ca2+-induced line broadening reflecting a conformational change in the linker region. Thus the results of the present study suggest that the electrostatically bipartite linker region may extend for docking and fold to facilitate pore opening.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3