Phosphatidylinositol 4,5 bisphosphate controls the cis and trans interactions of synaptotagmin 1

Author:

Nyenhuis S.B.,Thapa A.,Cafiso D. S.ORCID

Abstract

AbstractSynaptotagmin 1 acts as the Ca2+-sensor for synchronous neurotransmitter release; however, the mechanism by which it functions is not understood and is presently a topic of considerable interest. Here we describe measurements on full-length membrane reconstituted synaptotagmin 1 using site-directed spin labeling where we characterize the linker region as well as the cis (vesicle membrane) and trans (cytoplasmic membrane) binding of its two C2 domains. In the full-length protein, the C2A domain does not undergo membrane insertion in the absence of Ca2+; however, the C2B domain will bind to and penetrate in trans to a membrane containing phosphatidylinositol 4,5 bisphosphate (PIP2), even if phosphatidylserine (PS) is present in the cis membrane. In the presence of Ca2+, the Ca2+-binding loops of C2A and C2B both insert into the membrane interface; moreover, C2A preferentially inserts into PS containing bilayers and will bind in a cis configuration to membranes containing PS even if a PIP2 membrane is presented in trans. The data are consistent with a bridging activity for Syt1 where the two domains bind to opposing vesicle and plasma membranes. The failure of C2A to bind membranes in the absence of Ca2+ and the long unstructured segment linking C2A to the vesicle membrane indicates that synaptotagmin 1 could act to significantly shorten the vesicle-plasma membrane distance with increasing levels of Ca2+.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3