Modulation of in vivo 3-deoxyglucosone levels

Author:

Brown T.R.1,Su B.2,Brown K.A.3,Schwartz M.A.2,Tobia A.M.2,Kappler F.2

Affiliation:

1. Departments of Radiology and Biomedical Engineering, Columbia University, New York, NY, U.S.A.

2. Dynamis Therapeutics, Inc., Philadelphia, PA, U.S.A.

3. Department of Toxicology, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

Abstract

Fructoselysine 3-phosphate is synthesized in vivo by the recently discovered fructoseamine-3-kinase (F3K) from fructoselysine and ATP and decomposes to lysine, Pi and 3-deoxyglucosone (3DG). This pathway appears to dominate 3DG production in vivo, making it possible to modulate 3DG levels by stimulating or inhibiting the reaction. Present inhibitors are non-reacting substrate analogues with relatively high Ki values and can inhibit F3K sufficiently in vivo to reduce 3DG in diabetic rat plasma by approx. 50%. Stimulation of the F3K pathway by feeding glycated casein causes an increase of 10–20-fold in plasma levels of 3DG and 3-fold in kidney tubules. Consequences of this increase were studied in two systems: the Eker rat, a model of susceptible kidney tubules; and birth rates in two rat strains. In both cases substantial pathological effects were observed. In the Eker rats, an approx. 3-fold increase in kidney lesions was observed (P<0.00001). In both Fischer 344 and Sprague–Dawley rats, birth rates were reduced by 56% (P<0.0001) and 12% (P<0.015) respectively. These results suggest that inhibition of F3K is a promising new therapeutic target for diabetic complications, as well as other 3DG-dependent pathologies.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3