Iodide modulation of the EDTA-induced iodine reductase activity of horseradish peroxidase by interaction at or near the EDTA-binding site

Author:

Bhattacharyya D K1,Bandyopadhyay U1,Chatterjee R1,Banerjee R K1

Affiliation:

1. Department of Physiology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700032, India

Abstract

Horseradish peroxidase (HRP) catalyses the reduction of iodinium ion (I+) to iodide by H2O2 in the presence of EDTA. I+ reduction occurs optimally at pH 6 whereas the enzyme catalyses iodide oxidation optimally at pH 3.5. Thus the two activities reside on the same enzyme with two characteristic pH optima. Iodide modulates the expression of the reductase activity by EDTA. Higher concentrations of iodide inhibit the reductase activity by EDTA. Nitrite, an electron donor, acts similarly to iodide. Both EDTA and nitrite competitively inhibit iodide oxidation, indicating that they compete with iodide for the same binding site for electron flow to the haem iron group. However, unlike iodide, EDTA converts compound I, not into the native enzyme, but into a compound absorbing at 416 nm which reduces I+ and then returns to the native form. The apparent equilibrium dissociation constant, KD, for the formation of the EDTA-HRP complex (15 mM) is doubled in the presence of iodide, indicating interference with EDTA binding by iodide. EDTA binds away from the haem iron centre and not through intramolecular Ca2+. The pH-dependence of EDTA binding indicates that an ionizable group of the enzyme with pKa 5.8, presumably a distal histidine, controls the binding. The data suggest that iodide competes with EDTA for compound I and modulates the iodine reductase activity by limiting the formation of the 416 nm-absorbing active compound.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3