Mechanism-based inactivation of lacrimal-gland peroxidase by phenylhydrazine: a suicidal substrate to probe the active site

Author:

MAZUMDAR Abhijit1,ADAK Subrata1,CHATTERJEE Ratna1,BANERJEE Ranajit K.1

Affiliation:

1. Department of Physiology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700 032, India

Abstract

Humans are exposed to various hydrazine derivatives for therapeutic control of several diseases, and mammalian peroxidases are implicated in the oxidative metabolism of many drugs. The results presented here indicate that lacrimal-gland peroxidase is irreversibly inactivated in a mechanism-based way by phenylhydrazine, which acts as a suicidal substrate in the presence of H2O2. The pseudo-first-order kinetic constants for inactivation at pH 5.5 are Ki=18 μM, kinact=0.25 min-1 and τ50=2.75 min, with a second-order rate constant of 0.75×104 M-1·min-1. Approx. 27 mol of phenylhydrazine and 54 mol of H2O2 are required per mol of enzyme for complete inactivation. The pH-dependent inactivation kinetics indicate the involvement of an ionizable group on the enzyme with a pKa value of 5.4, protonation of which favours inactivation. SCN-, the plausible physiological electron donor of the enzyme, protects it from inactivation. Binding studies by optical difference spectroscopy indicate that phenylhydrazine interacts with the enzyme with a KD value of 60 μM, and its binding is prevented by the presence of SCN-. The enzyme is also protected by 5,5-dimethyl-1-pyrroline N-oxide, a free-radical trap, suggesting the involvement of a radical species in the inactivation. ESR studies indicate the formation of a spin-trapped phenyl radical (aN=15.9 G and aβH=24.8 G) generated on incubation of phenylhydrazine with the enzyme and H2O2. A 75% loss of the Soret spectrum is observed when the enzyme is completely inactivated. However, in the presence of the spin trap, spectral loss is prevented and the enzyme compound II is readily reduced to the native state by phenylhydrazine. The phenylhydrazine-inactivated enzyme reacts with H2O2 or CN- to form compound II or the cyanide complex with a characteristic spectrum, indicating that haem iron is protected from attack by the radical species. The inactivated enzyme binds SCN- with a KD value similar to that of the native enzyme (15±3 mM), suggesting that the donor-binding site remains unaffected. CD studies of the inactive enzyme show complete disappearance of the Soret band at 409 nm with the appearance of a new band at 275 nm. This indicates that the haem environment of the enzyme is perturbed in the inactive form. As benzene, the end product of phenylhydrazine oxidation, has no effect on the enzyme, we suggest that the phenyl radical formed by one-electron oxidation by catalytically active enzyme inactivates it by incorporation in the vicinity of its haem moiety. The data support the use of phenylhydrazine as a probe for structural and mechanistic analysis of the active site of the lacrimal-gland peroxidase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3